Keypoint MoSeq
Motion Sequencing (MoSeq) is an unsupervised machine learning method for animal behavior analysis. Given behavioral recordings, MoSeq learns a set of stereotyped movement patterns and when they occur over time. This package provides tools for fitting a MoSeq model to keypoint tracking data and analyzing the results.
- Model fitting
- Visualization
crop_image()
plot_scree()
plot_pcs()
plot_syllable_frequencies()
plot_duration_distribution()
plot_kappa_scan()
plot_progress()
write_video_clip()
grid_movie()
get_grid_movie_window_size()
generate_grid_movies()
get_limits()
plot_trajectories()
generate_trajectory_plots()
overlay_keypoints_on_image()
overlay_keypoints_on_video()
add_3D_pose_to_plotly_fig()
plot_similarity_dendrogram()
matplotlib_colormap_to_plotly()
initialize_3D_plot()
add_3D_pose_to_fig()
plot_pcs_3D()
plot_trajectories_3D()
plot_poses_3D()
hierarchical_clustering_order()
plot_confusion_matrix()
plot_eml_scores()
plot_pose()
- Input/Output
- Utilities
np_io()
print_dims_to_explain_variance()
list_files_with_exts()
find_matching_videos()
pad_along_axis()
filter_angle()
get_centroids_headings()
filter_centroids_headings()
get_syllable_instances()
get_edges()
reindex_by_bodyparts()
get_instance_trajectories()
sample_instances()
interpolate_along_axis()
interpolate_keypoints()
filtered_derivative()
permute_cyclic()
check_nan_proportions()
format_data()
get_typical_trajectories()
syllable_similarity()
downsample_timepoints()
check_video_paths()
- Error Calibration